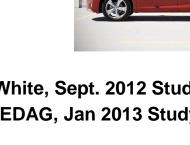


Life Cycle Assessment -Energy and CO2 Emissions of Aluminum-Intensive Vehicles

Sujit Das January 15, 2014

National Laboratory



1 Managed by UT-Battelle for the Department of Energy

Presentation_name

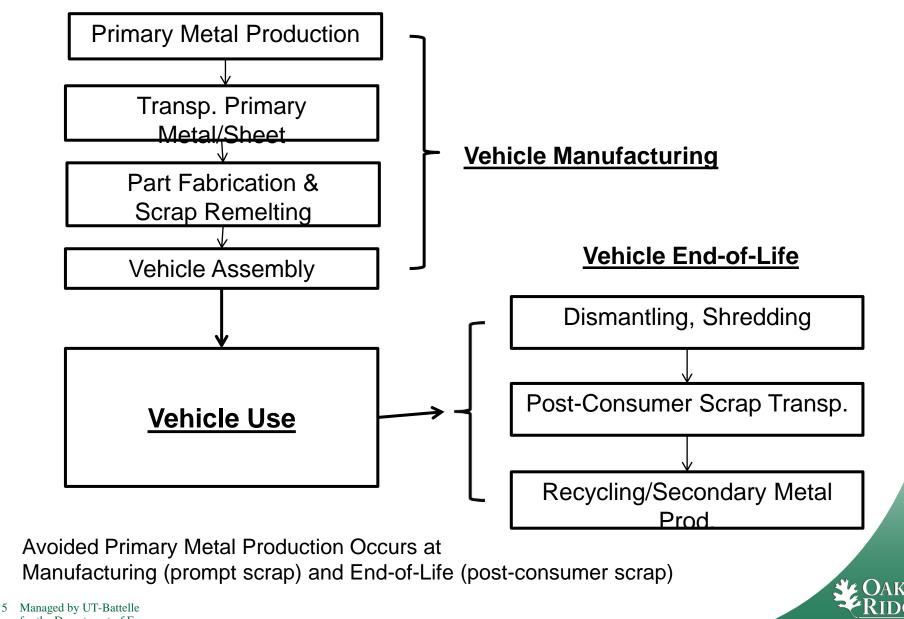
LCA Study Scope

- **Standards Compliance:**
 - ISO 14040 and ISO 14044
 - Draft 2012 CSA-PCR-2012:1 (environmental performance of autoparts) _
- Functional Unit:
 - 2010 Toyota Venza Vehicle
 - Conventional powertrain
 - Vehicle configurations _
 - current production steel vehicle
 - lightweight steel (LWSV) EPA Body-in-White, Sept. 2012 Study
 - Aluminum-intensive (AIV) vehicle FEV/EDAG, Jan 2013 Study
- Cradle-to-grave approach
 - Primary metal production _
 - Autoparts manufacturing and assembly Transportation
 - Use

- Semi-fabrication material production
- End-of-life metals recycling

LCA Study Goals

- End-of-Life Recycling:
 - closed-loop approach ISO 14044:2006
 - Avoided primary production equals recovered scrap
- Life cycle impacts (Ecoinvent V. 1.02)
 - Total Primary energy
 - Cumulative Energy Demand
 - Global Warming Potential (CO2e)
 - Acidification Potential
 - Eutrophication Potential
 - Photo Chemical Smog Potential
 - Respiratory Effects Potential,
 - Ozone Depletion Potential -- TRACI 2.1 Version 1.00

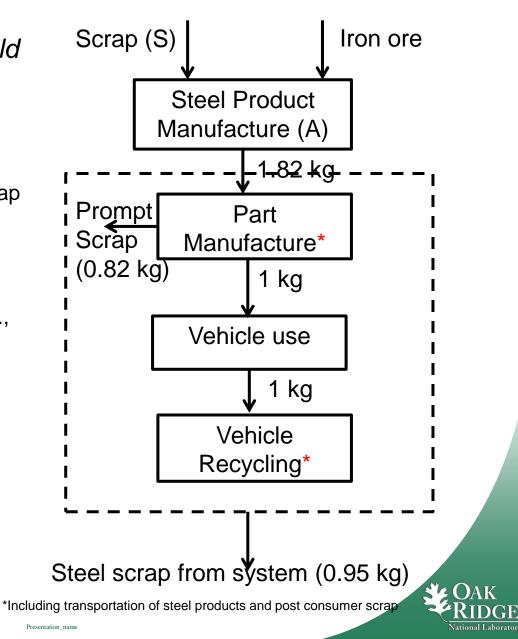

LCA – Functional Unit Materials

Material	Baseline	LWSV	AIV
Iron	127	49	49
Steel (Kg)	1,011	794	366
Pickled Hot Rolled (SP)	242	181	172
Electro-Galvanized (BIW, SP)	684	344	138
Hot-Dip Galvanized (BIW, SP)	59	45	34
Eng. Steel (Other)	27	224	22
Iron	127	49	49
Aluminum (kg)	157	194	459
Sheet	12	55	296
Cast (A356)	128	125	125
Extrusion	17	14	38
Other materials	416	416	416
Vehicle Total Weight (Kg)	1,711	1,399	1,236

Mass distribution includes impacts on secondary part mass changes due to primary mass reduction SP = Structural Part

Vehicle Life Cycle Stages

Presentation name


for the Department of Energy

Steel LCI Data Methodology

LCI = X - (RR-S)Y(Xpr - Xre)[Applicable for when scrap could be both inputs and outputs]

Where:

- X = Cradle-to-gate product LCI
- RR = Recovery rate, i.e., steel scrap from system, 95% for stamped automotive steel – SRI 2011)
- S = Scrap input into primary production process (44%, 20%, 6.5%, and 100.1% for hot dip galv., pickled hot rolled coil, electrogalvanized, and eng. steel respectively)
- Y = Process Yield (EAF for steel, i.e., 91.6%)
- Xpr Xre = Difference in energybetween primary and secondary metal production
- Prompt scrap generated (45% for stamping and 15% eng. steel) [Krupitzer 2013] Managed by UT-Battelle

2012 Steel LCI Data

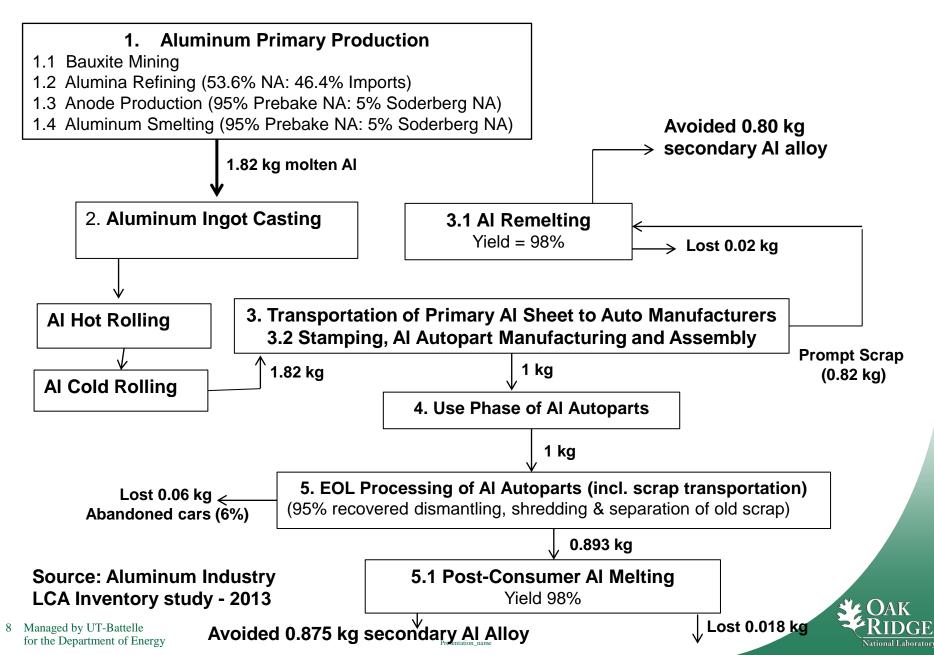
• Primary steel production - unavailable

- all LCI data contain ferrous scrap input
- S factor (LCI data provided represent X part of the formula, excludes recycling)

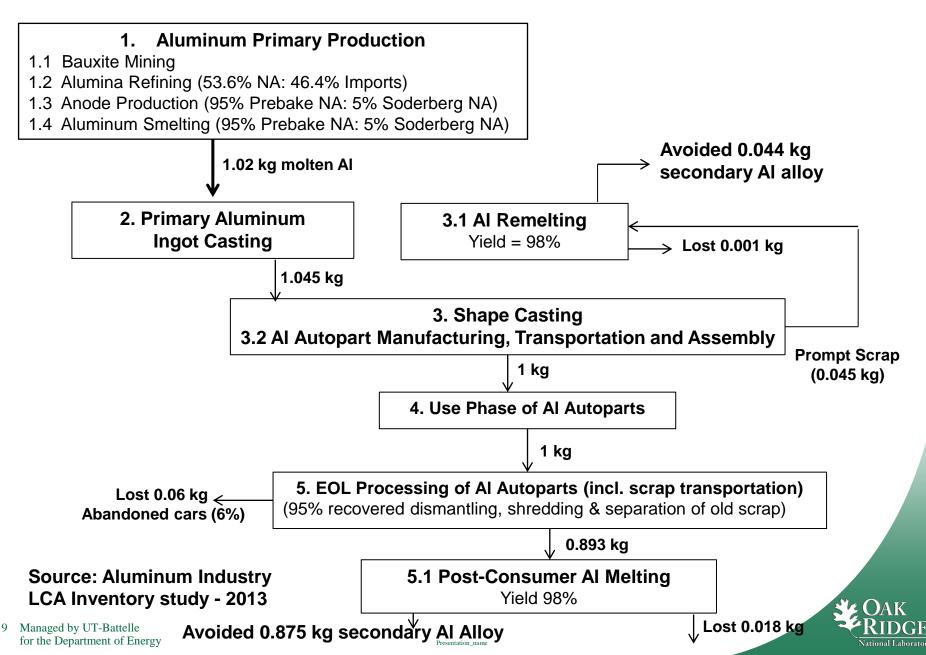
• North America data:

- Pickled hot rolled (Structural Part)
- Hot dip galvanized coil (BIW, Structural Part)

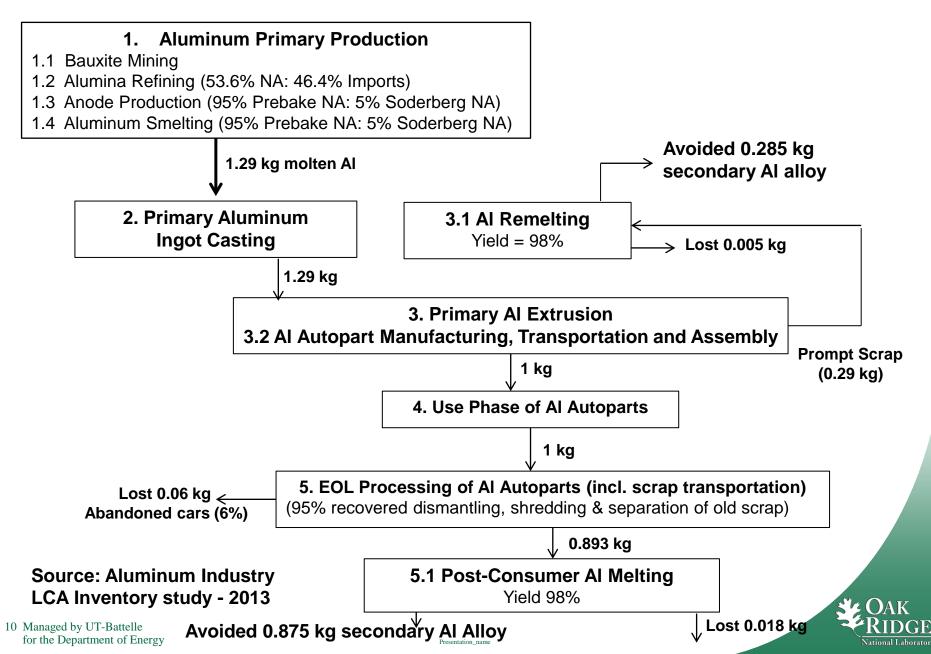
• Global data:


- Electro-galvanized (BIW, Structural Part)
- Engineering steel (Other)

Value of scrap data in terms of Y(Xpr-Xre) available for global only


- 91.6% EAF global melting efficiency (lower than 98% assumed for aluminum)
- No significant difference in LCI data for advanced steels, i.e., AHSS, UHSS etc.

Source: World Autosteel


Life Cycle - Al Stamped Part

Life Cycle Stages - Al Cast Part

Life Cycle Stages - Al Extrusion Part

Aluminum LCI Data

- 2013 Aluminum LCI data Al ingot
 - No distinction made for AI alloy compositions used for cast or wrought materials
 - Data represent production-weighted average data for North America
 - Primary, secondary production US & Canada
 - Semi-fabricated products US, Canada, & Mexico
- Forming technology stamping, extrusion, and casting
 - Shape Casting (Die Casting: 60%; Permanent Mold Casting: 30%; Sand Casting: 9%)
- Electricity profile based on North America AI producer production mix
- Electricity used for electrolysis based on domestic aluminum smelters (Hydropower: 75%, Coal: 24%, Oil+Natural Gas+Nuclear Power: 1%)
 - Share of electrolysis (Pre-baked 95% vs. Soderberg 5%)
- Prompt scrap recovery
 - Sheet: 45% [same as steel stamping]; Cast: 4.3%; and Extrusion: 22.5%)
- Scrap melting efficiency 98% (based on scrap and subsequent dross/salt cake recycling)

SimaPro software by Pré Consultants for LCA

Vehicle Use Phase

 Mass-induced fuel consumption improvement due to lightweight steel and aluminum designs (constant performance)

 $CA,n = (mpart, n - mpart, b) \times VA \times LTDD$, where,

CA,n = the total life cycle mass-induced fuel change (decrease/or increase) of new autoparts designs in liters

mpart, n = mass in kg of new design autoparts (i.e., 1399 kg LWSV, 1236 kg AIV)

- *mpart, b* = mass in kg of baseline autoparts (baseline, replaced with the new design), i.e., 1711 kg
- VA = mass-induced fuel consumption reduction value <u>with</u> <u>powertrain adaptation</u> - 0.38l/100km.100 kg

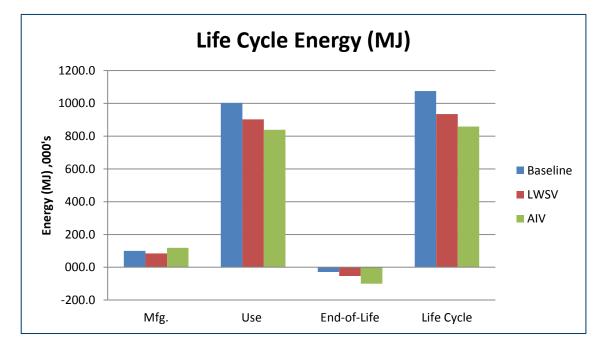
LTDD = baseline life-time driving distance (250,000 km, 155,000 mi.)

• Gasoline primary energy:

40.9 MJ/I (ANL GREET Model – Well-To-Pump and Pump-To-Wheels)

• Baseline Vehicle Fuel Economy – 24 mpg Label (30 MPG Test)

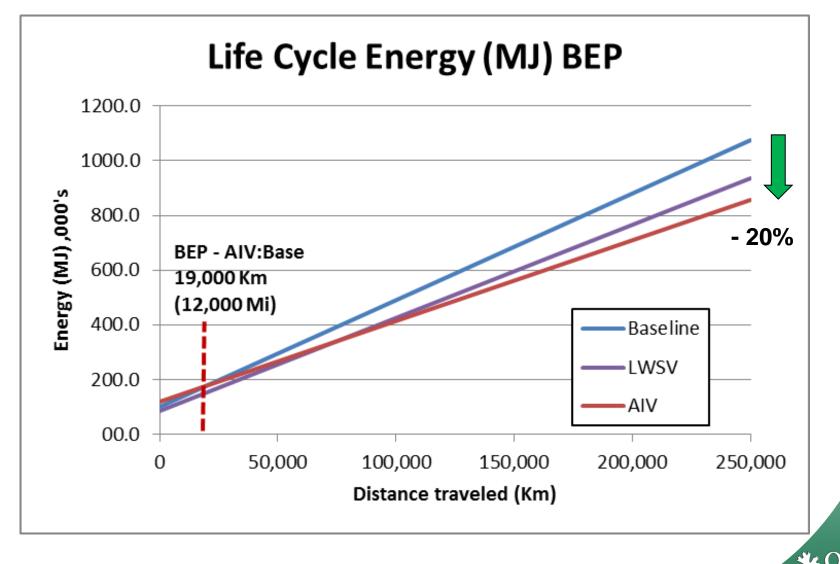
Life Cycle Environmental Impacts


Parameter Parameter	<u>Unit</u>	Baseline	LWSV	<u>AIV</u>
Global warming	kg CO2 eq	76,397	67,777	63,412
Ozone depletion	kg CFC-11 eq	2.9 E-05	4.2 E-05	1.3 E-04
Smog	kg O3 eq	1,563	1,348	1,276
Acidification	kg SO2 eq	56	47	48
Eutrophication	kg N eq	3	2	2
Respiratory effects	kg PM2.5 eq	7	6	6

Impact Assessment Method: TRACI 2.1 Version 1.00

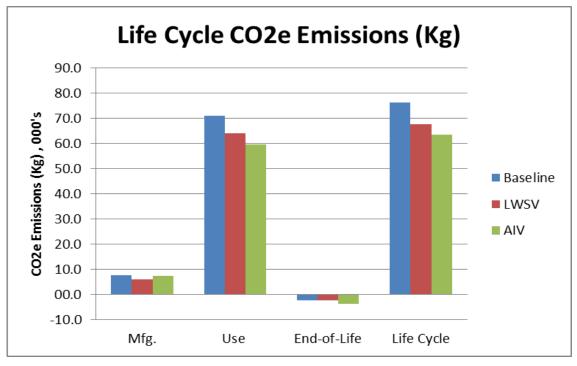
13 Managed by UT-Battelle for the Department of Energy

Life Cycle Energy Findings


MJ/Vehicle

	Mfg.	Use	End-of- Life	Total Life Cycle
Baseline	100,328	1,002,819	-28,710	1,074,438
LWSV	84,800	902,451	-52,815	934,436
AIV	116,350	839,040	-99,628	857,761

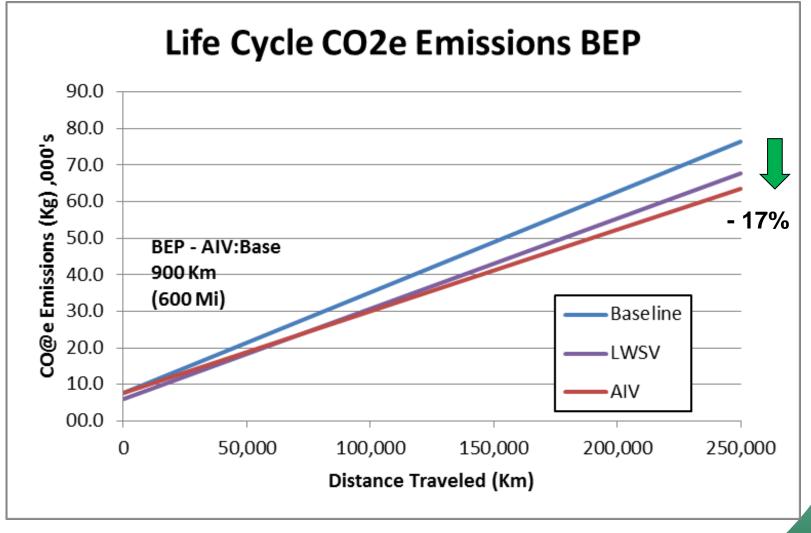
14 Managed by UT-Battelle for the Department of Energy


Energy Breakeven Analysis

15 Managed by UT-Battelle for the Department of Energy

National Laboratory

Life Cycle CO2e Findings


CO2e - Kg

	Mfg.	Use	End-of- Life	Total Life Cycle
Baseline	7,599	71,136	-2,337	76,397
LWSV	6,102	64,016	-2,341	67,777
AIV	7,555	59,518	-3,661	63,412

16 Managed by UT-Battelle for the Department of Energy

CO2 eq. Breakeven Analysis

Conclusions – Auto. Aluminum LCA

- Aluminum Intensive Vehicle (AIV) technology offers the lowest life cycle Energy and CO₂ impact
 - Key factor fuel economy improvement due to light-weighting
 - AIV reduces vehicle mass 25% (vs. baseline) significantly reducing vehicle use phase energy consumption (20%) and CO₂ emissions (17%)

MJ/Vehicle

 Use phase 250,000 KM (155,000 M) contributes over 90% of life cycle impacts for all vehicle configurations studied

	Use	Life Cycle	% Use Phase
Baseline	1,002,819	1,074,438	93%
LWSV	902,451	934,435	97%
AIV	839,040	857,761	98%

- Lightweight Steel Vehicle (LWSV) has the lower production phase environmental impact offset by higher use phase energy and CO₂
- AIV Energy Break-even distance:
 - AIV:Baseline vehicle 19,000 km (12,000 miles)
 - AIV:LWSV 76,000 km (47,000 miles)

