

Lighter and Safer Cars by Design

Doug Richman The Aluminum Association's Transportation Group (ATG)

NHTSA Mass/Size/Safety Workshop

May 13, 2013 Washington, D.C.

DRI Compatibility Study (2008)

Modern vehicle designs - generally good into fixed barriers irrespective of vehicle type or material

Safety discussion is really about vehicle compatibility

How much energy must be dissipated
How each vehicle decelerates

Compatibility study - Dynamic Research Inc. (DRI)

-SUV in moderately severe collisions -Cars, other SUVs, fixed obstacles -3,500 collisions, using NCAP "pulses" and NASS/CDS descriptors -Investigate injury index (ELU) -SUV lighter or larger -Reduce ELU

DRI Compatibility Study

Baseline: Conventional SUV with Conventional Passenger Car and LTV

				Total ELU's		Net Benefit (%)		
		Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
		Rollover	175	2.23	2.48	0.53	-11.2	76.2
	SUV	Hit Object	420	2.54	1.74	0.81	31.5	68.1
	Driver	Hit PC	1750	1.21	2.47	1.19	-104.1	1.7
		Hit LTV	1155	25.97	34.02	26.27	-31.0	-1.2
-		Subtotal	3500	31.95	40.71	28.80	-27.4	9.9
Γ	OV	In PC	1750	28.00	9.70	16.79	65.4	40.0
	Driver	In LTV	1155	25.99	11.28	19.59	56.6	24.6
		Subtotal	2905	53.99	20.98	36.38	61.1	32.6
		Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18	28.2	24.2

DRI Compatibility Study

20% Reduced Weight SUV (Single Vehicle) into Conventional Fleet

				Total ELU's		Net Ber	nefit (%)	
_		Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
		Rollover	175	2.23	2.48	0.53	-11.2	76.2
	SUV	Hit Object	420	2.54	1.74	0.81	31.5	68.1
	Driver	Hit PC	1750	1.21	2.47	1.19	-104.1	1.7
		Hit LTV	1155	25.97	34.02	26.27	-31.0	-1.2
_		Subtotal	3500	31.95	40.71	28.80	-27.4	9.9
Γ	OV	In PC	1750	28.00	9.70	16.79	65.4	40.0
	Driver	In LTV	1155	25.99	11.28	19.59	56.6	24.6
		Subtotal	2905	53.99	20.98	36.38	61.1	32.6
		Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18	28.2	24.2

DRI Compatibility Study

Increased Length (4.5") SUV (Single Vehicle) into Conventional Fleet

			Total ELU's		Net Ber	nefit (%)	
	Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
	Rollover	175	2.23	2.48	0.53	-11.2	76.2
SUV	Hit Object	420	2.54	1.74	0.81	31.5	68.1
Driver	Hit PC	1750	1.21	2.47	1.19	-104.1	1.7
	Hit LTV	1155	25.97	34.02	26.27	-31.0	-1.2
	Subtotal	3500	31.95	40.71	28.80	-27.4	9.9
OV	In PC	1750	28.00	9.70	16.79	65.4	40.0
Driver	In LTV	1155	25.99	11.28	19.59	56.6	24.6
	Subtotal	2905	53.99	20.98	36.38	61.1	32.6
	Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18	28.2	24.2

Lighter and Safety Cars by Design

DRI Compatibility Study Findings:

- Reduced mass or Length
 - **Reduced fleet ELU's**
- Mass (-20%)

Fleet ELU's reduced 28% Reduced struck vehicle ECU's 61% Some increase in Lt. vehicle ELU's

- Length (Design) (+4 inch) Fleet ELU's reduced 24%

Reduced longer vehicle driver ECU's by 10% Reduced struck vehicle ECU's 33%

Note: Observations are directional not absolute

Source: EDAG

STIFFNESS RELEVANCE AND STRENGTH RELEVANCE IN CRASH OF CAR BODY COMPONENTS

Official report 83440 by ika May 2010

Source: ika - University of Aachen and the European Aluminium Association (EAA)

Light-weighting Potential of High-Strength Steel & Aluminum

University of Aachen ika (Germany)

Mid-size European Sedan

Objective

Maximum auto body weight saving potential Steel Aluminum

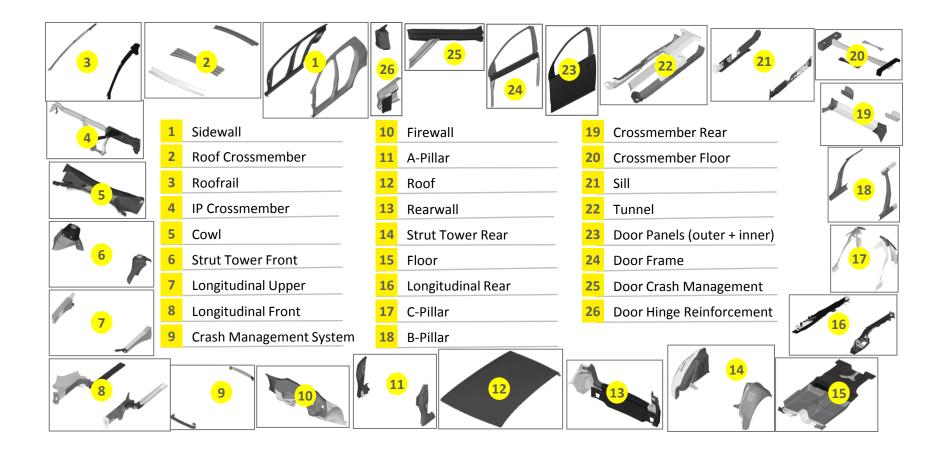
Source: ika - University of Aachen and the European Aluminium Association (EAA)

Analytical Analysis

Methodology

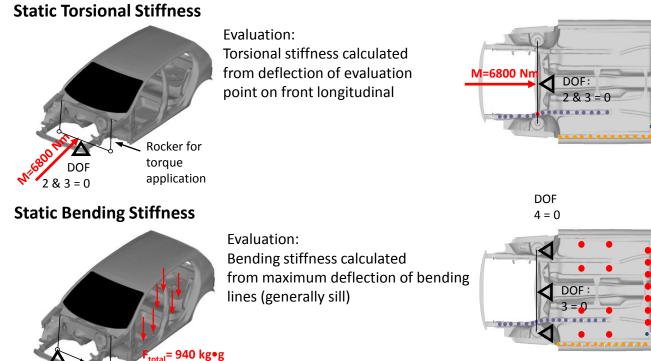
Model body - classify components (strength or stiffness limited)

Collision performance (index: intrusion)


Optimize body components – material, grade, gauge High-strength steel grades (including ultra high-strength steel) Aluminum alloys

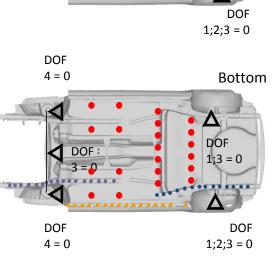
Source: ika - University of Aachen and the European Aluminium Association (EAA)

26 Components for Quantitative Evaluation



Source: ika - University of Aachen and the European Aluminium Association (EAA)

Stiffness Load Cases



Bottom

 Δ

DOF

1;3 = 0

Red dots = Load/force application Black dots = Deflection measured Orange dots = Deflection measured Blue dots = Deflection measured

Source: ika - University of Aachen and the European Aluminium Association (EAA)

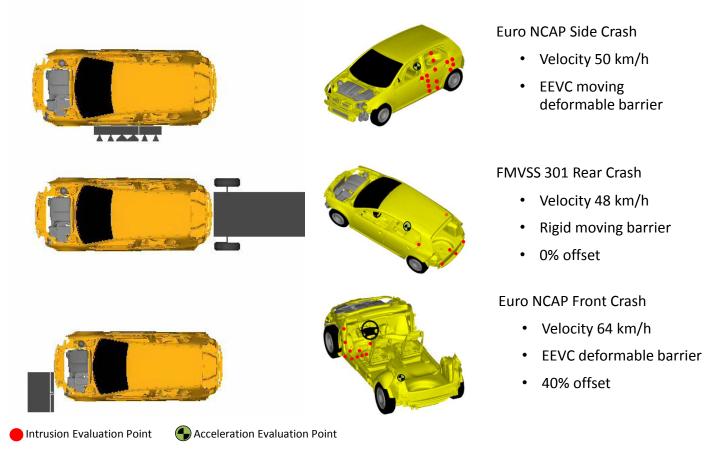
=9221 N

DOF

4 = 0

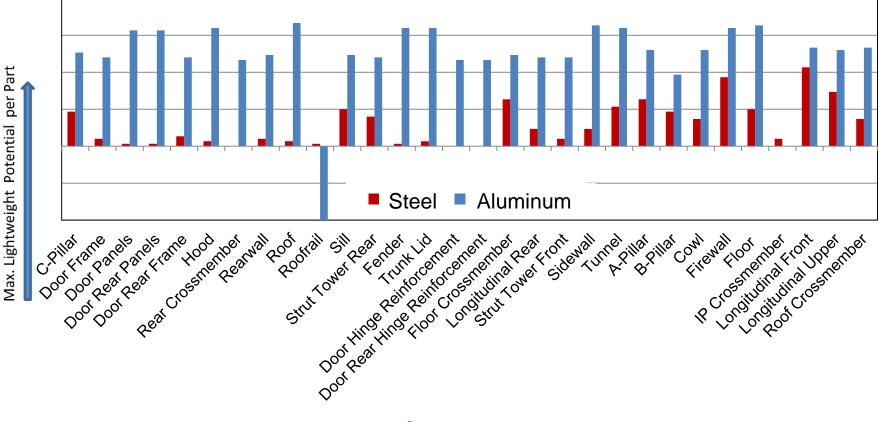
DOF

3 = 0


DOF

4 = 0

Strength Load Cases


Evaluated Using European and U.S. Crash Standards

Source: ika - University of Aachen and the European Aluminium Association (EAA)

Light-weighting | Potential by Material

Components

Source: ika - University of Aachen and the European Aluminium Association (EAA)

Key Findings

- NVH and Safety performance objectives <u>appear achievable</u> with reduced mass designs
- Strength not the limiting factor for a majority of body components (Mass)
- Weight reduction potential
 - High-strength steel (YS to 1,200 MPa) = ~11%
 - Aluminum (YS to 400 MPa) = ~40%

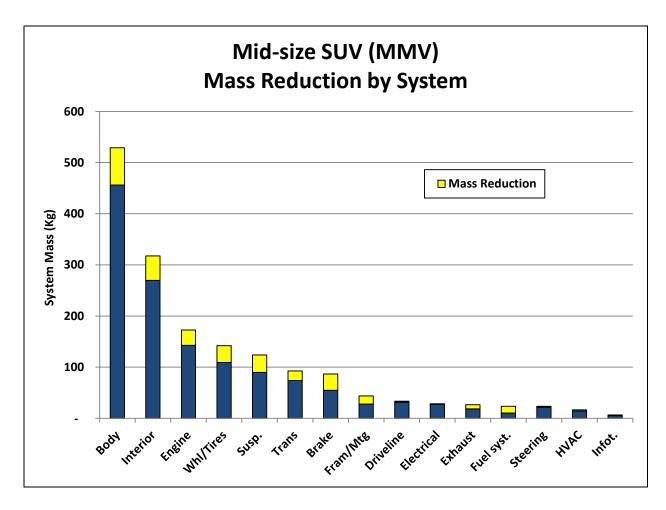
http://www.eaa.net/en/applications/automotive/studies/

Source: ika - University of Aachen and the European Aluminium Association (EAA)

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"c

Objectives:

- Mass Reduction 20%
 - Retain: Size Functionality Safety (5 Star) NVH Performance
- Use proven body structure
- Cost increase < 10%</p>



Materials and process <u>available and practical 2017</u>

Source: http://www.epa.gov/otaq/climate/documents/420r12026.pdf

Body is Key to Vehicle Mass Reduction

Source: http://www.epa.gov/otaq/climate/documents/420r12026.pdf

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

Findings:

- Reduced mass mid-size cross-over SUV <u>appears capable</u> of meeting all design objectives size, functionality, <u>safety</u>, NVH, performance
- 18% (313 Kg) vehicle mass reduction (MMV)
 - advanced steel BIW reduction 14%
 - total body mass reduction 14%
 - aluminum closures, chassis, suspension, brakes
- Estimated cost impact: \$148 (reduction)

Source: http://www.epa.gov/otaq/climate/documents/420r12026.pdf

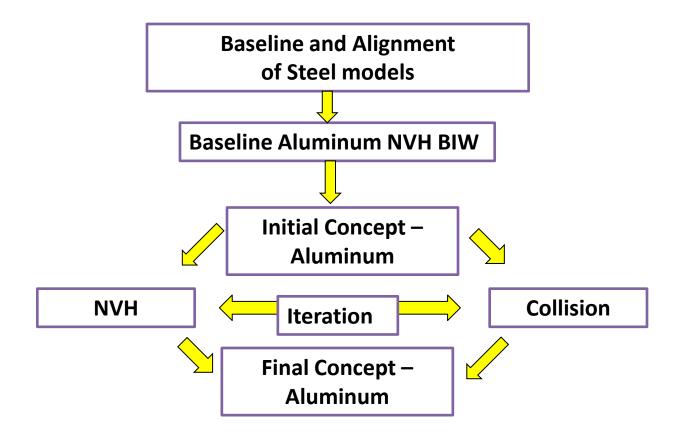
Mid-size SUV | <u>Aluminum</u> BIW Concept Study

January 2013

Mid-size SUV | <u>Aluminum</u> BIW Concept Study

Objectives:

- Maximum Mass Reduction <u>Aluminum Intensive Body</u>
- Retain: Size


Functionality Safety (5 Star) NVH Performance

- Use proven body structure
- Cost increase: TBD

Materials and process <u>available and practical 2017</u>

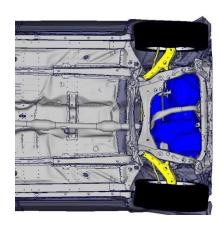
AIV Body Design Process | (NVH and Crash)

© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.

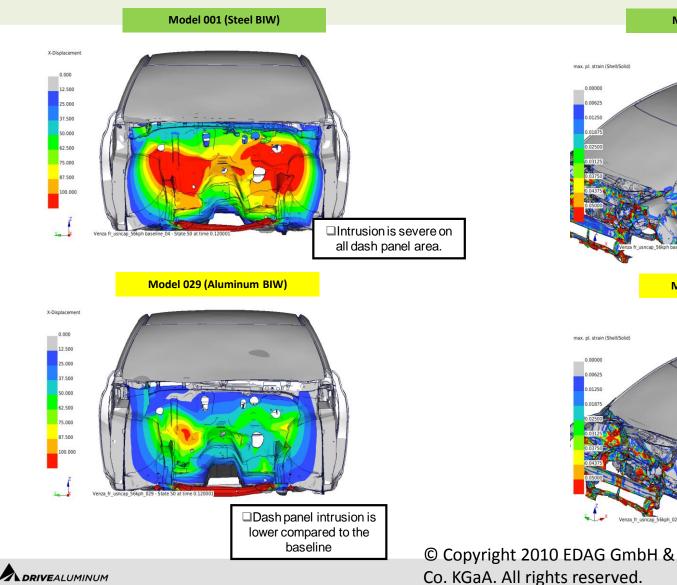
Mid-size SUV | Aluminum BIW Concept Study

Study Description	Overall Torsion Mode (Hz)	Overall Lateral Bending Mode (Hz)	Rear End Match Boxing Mode (Hz)	Overall Vertical Bending Rear End Breathing Mode (Hz)	Torsion Stiffness (KN.m/rad)	Bending Stiffness (KN/m)	Test Weight BIW (Kg)
Baseline Model	54.6	34.3	32.4	41.0	1334.0	18204.5	407.7
Aluminum BIW	64.5	39.3	40.7	49.1	1469.6	19855.0	243.0
Percentage Change (%)	+18.1%	+14.6%	+25.6%	+19.8%	+10.2%	+9.1%	-40.4%

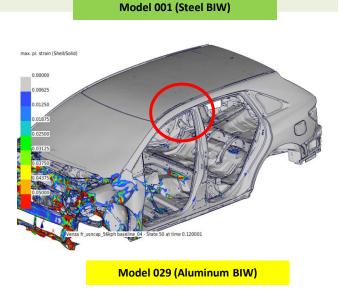
© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.



Mid-size SUV | Aluminum BIW Concept Study



Deformation Mode Comparison: Front Area @80 msec.



FMVSS208 - 35mph Frontal Rigid Barrier (FRB) Impact (USNCAP)

Dash Panel Intrusion Comparison

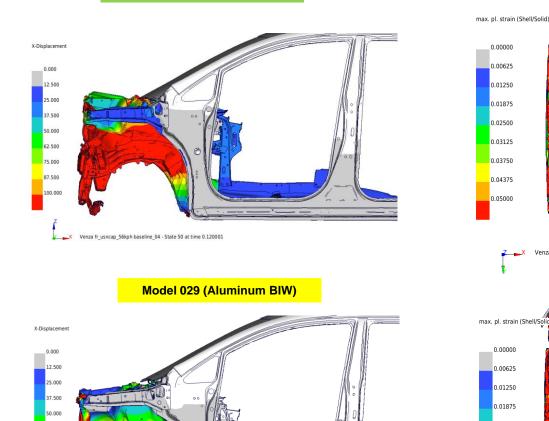
A-Pillar Deformation Comparison

FMVSS208 - 35mph Front al Nigid Barrier (FRB) Impact (USNCAP)

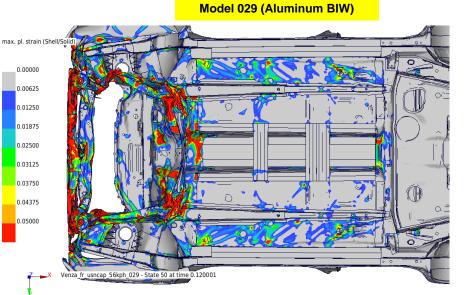
Dynamic Crush

62 500

75.000 87.500


100.000

Bottom View : Plastic Strain


/enza fr usncap 56kph baseline 04 - State 50 at time 0.120001

Model 001 (Steel BIW)

Dynamic crush is lower

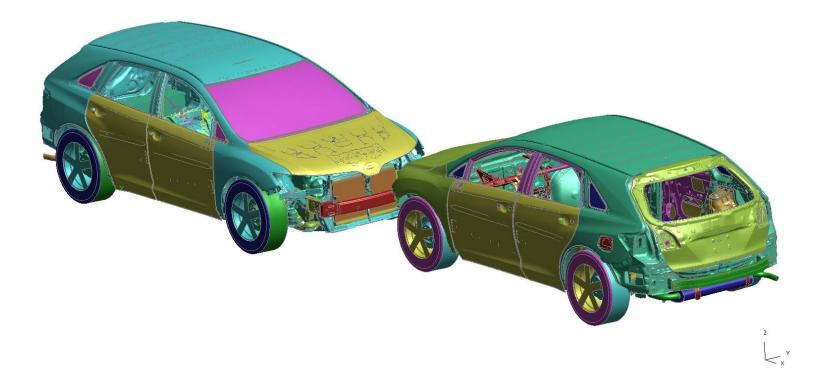
© Convergent 2010 EDAG GmbH & Co. than the baseline rights reserved.

Venza fr usncap 56kph 029 - State 50 at time 0.120001

Mid-size SUV | Aluminum BIW Concept Study

FMVSS208 – 35 mph Frontal Rigid Barrier Impact

© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.

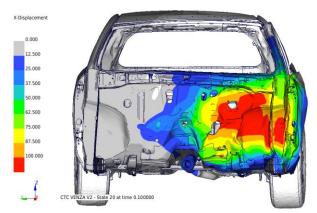

Mid-size SUV | Aluminum BIW Concept Study

Findings:

- Aluminum intensive mid-size cross-over SUV <u>appears capable</u> of meeting all design objectives
 - size, functionality, safety, NVH, performance
- <u>28% (476 Kg) total vehicle mass reduction</u>
 - aluminum BIW, closures, chassis, suspension, brakes
 - Body mass reduction 39%
- Estimated cost impact: + \$534 (\$1.12/Kg)
 - Net of secondary mass reductions

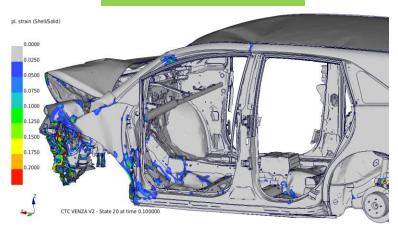
Compatibility Simulation

• 56km/h Car to Car with 40% Overlap

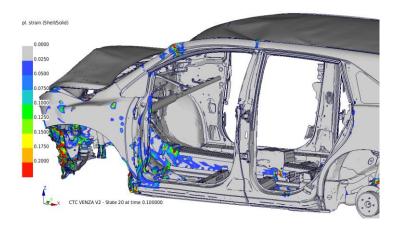

8.0 Car to Car Simulation

Dash Panel Intrusion Comparison

Model 001 (Steel BIW)



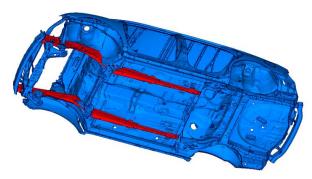
Model 029 (Aluminum BIW)

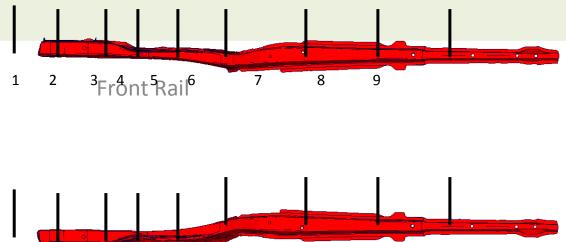


A-Pillar Deformation Comparison

Model 001 (Steel BIW)

Model 029 (Aluminum BIW)




© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.

Pageo2&Aufm#num.org

Car-to-Car Collision Simulation

Max Section Forces

LHS

RHS

No	Base (kN)	Alloy (kN)
1	90.7	67.0
2	99.4	64.2
3	94.4	80.2
4	95.9	76.3
5	93.9	58.9
6	77.2	75.1
7	95.4	95.4
8	68.0	64.7
9	47.4	45.7

No	Base (kN)	Alloy (kN)		
1	19.3	19.1		
2	27.2	32.4		
3	26.5	41.2		
4	29.1	42.1		
5	32.3	40.9		
6	23.7	29.8		
7	48.1	55.7		
8	43.6	43.3		
9	37.4	36.9		

Aluminum Mid-size SUV | Car-to-Car Collision Simulation

Key Findings Safety Implications

Intrusions AIV floor pan intrusions reduced Global Velocity / Acceleration AIV concept more severe deceleration Potentially higher occupant loading (with the same restraints system)

Conclusions

AIV Structure design changes to accommodate Increased structure stiffness Higher energy absorption capacity

Lighter and Safer Cars by Design

Conclusions:

- Vehicle design, not mass, Key to Collision Performance
- Reduced mass body structures with equal or superior collision performance appear feasible
- Potential Body mass reduction

AHSS(10-12 % reduction)MMV Optimization(12-16 % reduction)Steel, AHSS, Al, Mg(24-28 % reduction)Aluminum, AHSSAluminum, AHSS

- Mix of BIW solutions likely

AHSS – price critical market segment: Downsizing MMV (body) – size-cost optimization: MODERATE downsizing AIV (body) – size critical market segment: LIMITED downsizing

www.DriveAluminum.org @DriveAluminum